Tracking Objects Using Density Matching and Shape Priors

نویسندگان

  • Tao Zhang
  • Daniel Freedman
چکیده

We present a novel method for tracking objects by combining density matching with shape priors. Density matching is a tracking method which operates by maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Such trackers can be expressed as PDE-based curve evolutions, which can be implemented using level sets. Shape priors can be combined with this levelset implementation of density matching by representing the shape priors as a series of level sets; a variational approach allows for a natural, parametrization-independent shape term to be derived. Experimental results on real image sequences are shown. keywords: tracking, shape priors, active contours, density matching, PDEs, level set method

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M2Tracker: A Multi-view Approach to Segmenting and Tracking People in a Cluttered Scene Using Region-Based Stereo

We present a system that is capable of segmenting, detecting and tracking multiple people in a cluttered scene using multiple synchronized cameras located far from each other. The system improves upon existing systems in many ways including: (1) We do not assume that a foreground connected component belongs to only one object; rather, we segment the views taking into account color models for th...

متن کامل

People Tracking and Segmentation Using Efficient Shape Sequences Matching

We design an effective shape prior embedded human silhouettes extraction algorithm. Human silhouette extraction is found challenging because of articulated structures, pose variations, and background clutters. Many segmentation algorithms, including the Min-Cut algorithm, meet difficulties in human silhouette extraction. We aim at improving the performance of the Min-Cut algorithm by embedding ...

متن کامل

Multiregion Level Set Tracking with Transformation Invariant Shape Priors

Tracking of regions and object boundaries in an image sequence is a well studied problem in image processing and computer vision. So far, numerous approaches tracking different features of the objects (contours, regions or points of interest) have been presented. Most of these approaches have problems with robustness. Typical reasons are noisy images, objects with identical features or partial ...

متن کامل

Multi-object segmentation using coupled nonparametric shape and relative pose priors

We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using trainin...

متن کامل

Particle Filtering with Dynamic Shape Priors

Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape information. In this paper, we propose a novel method based on employing a locally linear embedding in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003